Genetic Algorithm, Extremal Optimization, and Particle Swarm Optimization Applied to the Discrete Network Configuration Problem
نویسندگان
چکیده
Genetic Algorithm, Extremal Optimization, and Particle Swarm Optimization are applied to the discrete (integer-based) communications network configuration problem. In this preliminary study, each heuristic search scheme is used to determine the optimal (or near optimal) set of communications equipment components needed to satisfy user-specified radio subscriber and wire subscriber requirements. The network configuration problem is based on the U.S. Army’s Mobile Subscriber Equipment communications networking system. Although MSE is no longer a major asset in the U.S. Army’s communications inventory, it continues to provide an excellent platform for configuration optimization due to its non-permutation yet discrete nature. The comparison of the heuristics includes their overall reliability as well as the number of fitness evaluations needed to converge on the optimal solution. General results indicate that all approaches achieve relatively high reliability using some novel operators and adaptations, but the GA does so using considerably fewer fitness evaluations.
منابع مشابه
A New Mathematical Model in Cell Formation Problem with Consideration of Inventory and Backorder: Genetic and Particle Swarm Optimization Algorithms
Cell Formation (CF) is the initial step in the configuration of cell assembling frameworks. This paper proposes a new mathematical model for the CF problem considering aspects of production planning, namely inventory, backorder, and subcontracting. In this paper, for the first time, backorder is considered in cell formation problem. The main objective is to minimize the total fixed and variable...
متن کاملA Modified Discreet Particle Swarm Optimization for a Multi-level Emergency Supplies Distribution Network
Currently, the research of emergency supplies distribution and decision models mostly focus on deterministic models and exact algorithm. A few of studies have been done on the multi-level distribution network and matheuristic algorithm. In this paper, random processes theory is adopted to establish emergency supplies distribution and decision model for multi-level network. By analyzing the char...
متن کاملA Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables
A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...
متن کاملFrequency Control of Isolated Hybrid Power Network Using Genetic Algorithm and Particle Swarm Optimization
This paper, presents a suitable control system to manage energy in distributed power generation system with a Battery Energy Storage Station and fuel cell. First, proper Dynamic Shape Modeling is prepared. Second, control system is proposed which is based on Classic Controller. This model is educated with Genetic Algorithm and particle swarm optimization. The proposed strategy is compared with ...
متن کاملApplication of Particle Swarm Optimization and Genetic Algorithm Techniques to Solve Bi-level Congestion Pricing Problems
The solutions used to solve bi-level congestion pricing problems are usually based on heuristic network optimization methods which may not be able to find the best solution for these type of problems. The application of meta-heuristic methods can be seen as viable alternative solutions but so far, it has not received enough attention by researchers in this field. Therefore, the objective of thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008